Cognitive Dysfunction in Cats: Clinical Assessment and Management

Danièle A. Gunn-Moore, PhD

Increasing numbers of cats are living to become elderly and they commonly develop behavioral changes. The objectives of this article are to consider the possible causes and prevalence of behavioral problems in pet cats, to describe how cognitive dysfunction syndrome (CDS) typically presents, and how its diagnosis and management are often complicated by the concurrent presence of multiple interacting disease processes. The most frequently reported behavioral problems in old cats are loss of litter box training and crying out loudly at night. The most common causes of these problems are CDS, osteoarthritis, systemic hypertension (commonly secondary to chronic kidney disease or hyperthyroidism), hyperthyroidism (even without hypertension), deafness, and brain tumors. These conditions all occur frequently in older cats, many of which suffer from a number of concurrent interacting conditions. Owners and veterinary surgeons often mistake these for “normal aging changes,” so many treatable conditions are neglected and go untreated. Almost one third of cats 11 to 14 years of age develop at least one geriatric-onset behavior problem that appears to relate to CDS, and this increases to over 50% for cats 15 years of age or older. For optimum management of elderly cats with behavioral problems, all interacting conditions need to be diagnosed and addressed concurrently with management for CDS.

Keywords: cognitive dysfunction syndrome, geriatric behavioral changes, feline

With improvements in nutrition and veterinary medicine, the life expectancy of pet cats is increasing. In the United States over the last 20 years, the percentage of pet cats over 7 years of age has increased to over 40%, there has been a 15% increase in numbers of cats over 10 years of age, and over 10% of pet cats are over 12 years of age. In the United Kingdom, it is currently estimated that there are over 2.5 million “senior” cats, and because this accounts for approximately 30% of the pet cat population, the good management of these individuals is becoming an ever more important consideration for small animal veterinary practitioners.

Unfortunately, accompanying this growing geriatric population there are increasing numbers of pet cats with signs of altered behavior and apparent senility. These behavioral changes may result from many different disorders (Box 1) including systemic illness (e.g., hyperthyroidism), organic brain disease (e.g., brain tumors), true behavioral problems (e.g., separation anxiety), or cognitive dysfunction syndrome (CDS). Diagnosis involves a full investigation looking for underlying illness (Box 2) and assessment for behavioral problems. Once these have been ruled out, CDS should be considered, although, antemortem, this is a diagnosis of exclusion. The most commonly seen behavioral changes include spatial or temporal disorientation, altered interaction with the family, changes in sleep-wake cycles, house-soiling with inappropriate urination/defecation, changes in activity, and/or inappropriate vocalization (often displayed as loud crying at night) (Box 3).

Potential Causes of Behavioral Changes in Geriatric Cats

Perhaps the most common causes of behavioral changes in older cats are CDS, osteoarthritis (OA), systemic hypertension (commonly secondary to chronic kidney disease [CKD], hyperthyroidism or, possibly, diabetes mellitus [DM]), hyperthyroidism (even without hypertension), deafness, and brain tumors (most commonly meningioma). Much has been written elsewhere about the diagnosis and treatment of the other potential causes of behavioral disorders in old cats so this article will concentrate on CDS.

Cognitive Dysfunction Syndrome

CDS is the term applied to age-related deterioration of cognitive abilities, characterized by behavioral changes (Box 3), where no medical cause can be found. A survey looking at older cats (7-11 years of age) revealed that 36% of owners reported behavioral problems in their cats, and this increased
to 88% in cats between 16 and 19 years of age. A more recent study suggests that 28% of pet cats aged 11 to 14 years develop at least one geriatric-onset behavior problem that appears to relate to CDS, and this increases to over 50% for cats of 15 years of age or older: excessive vocalization and aimless activity are the most common problems in this older age group.

The cause of the syndrome is still unknown, but (1) compromised cerebral blood flow and (2) chronic free radical damage are both believed to be important. Numerous vascular changes can occur in the brain of old cats, including a decrease in cerebral blood flow, the presence of small hemorrhages around the blood vessels, and a form of arteriosclerosis. The brain of elderly cats may also be subject to compromised blood flow and hypoxia due to hypertension, heart disease, anemia, or blood clotting defects. A small amount of the oxygen that is used by cells in normal energy production is normally converted to free radicals. As cells age they become less efficient, producing less energy and more free radicals. Normally, these free radicals are removed by the body’s natural antioxidant defenses, including a number of specific enzymes and free radical scavengers, such as superoxide dismutase and vitamins A, C, and E. The balance between the production and removal of free radicals can be upset by disease, age, and stress. An excess of free radicals can lead to damage, and the brain is particularly susceptible because it has a high fat content, a high demand for oxygen, and a limited ability to repair. Ultimately, chronic damage can eventually lead to disease processes similar to those seen in humans with Alzheimer’s disease, with alteration of proteins within nerve cells (e.g., tau hyperphosphorylation) and deposition of protein plaques outside the nerve cells (made from β-amyloid protein). In humans and dogs, genetics, diet, and lifestyle choices have all been shown to influence the prevalence and distribution of neuropathologic changes (particularly β-amyloid plaques) and the nature of the associated cognitive dysfunction. Although these relationships are still to be determined in cats, it is likely that they will be similar.
Box 3. Common Geriatric-onset Behavioral Changes in Cats

- Spatial disorientation or confusion, e.g., getting trapped in corners or forgetting the location of the litter box (house-soiling is the most common reason for referral of old cats to behavioralists)
- Altered social relationships, either with their owners or other pets in the household, e.g., most commonly increased attention seeking, less commonly aggression
- Altered behavioral responses, e.g., increased irritability or anxiety, or decreased response to stimuli
- Changes in sleep/wake patterns
- Inappropriate vocalization, e.g., loud crying at night
- Altered learning and memory, such as forgetting commands or loss of housetraining
- Changes in activity, e.g., aimless wandering or pacing, or reduced activity
- Altered interest in food, either increased or, more typically, decreased
- Decreased grooming
- Temporal disorientation, e.g., forgetting that they have just been fed

Diagnosis of Older Cats with Behavioral Disorders

Gaining a correct diagnosis involves a full investigation (Box 2). Unfortunately, the diagnosis and management of older cats are often complicated by the concurrent presence of multiple interacting disease processes. In some cases, interacting conditions may worsen clinical signs, for example, OA, CKD (or other causes of polyuria), plus or minus increased fecal urgency (with chronic gastrointestinal disease), or difficult defecation (with constipation) may each exacerbate apparent loss of litter box training. Concurrent hyperthyroidism and DM can be very confusing because the clinical signs can be similar, and because each condition can affect laboratory findings for the other. For example, DM may suppress the serum thyroxin concentration to within the reference range, whereas the increased protein turnover associated with hyperthyroidism can reduce the serum fructosamine to a lower level than would be expected in a cat with uncomplicated DM. In some cases the treatment of one disease may worsen another, e.g., treatment of hyperthyroidism can unmask the severity of CKD. It is because of this that the implementation of senior health care clinics can be very beneficial. Although the clinics do need to be tailored to individual cats, in general they should involve regular and thorough physical examinations including assessment of body weight, calculation of percentage change in body weight, body condition score, systemic blood pressure, and retinal examination, and, ideally, in-practice mobility assessment plus full orthopedic and neurologic examinations (which can be challenging to perform in elderly cats because they need time to relax and move about on their own volition, preferably on a floor surface that gives them sufficient grip without catching their nails). A blood sample should be collected for biochemical screening, thyroxin concentration, and hematology and, where appropriate, serological testing for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV), and, where indicated toxoplasmosis and/or feline infectious peritonitis. A urine sample should be assessed by routine urine analysis, urine protein to creatinine ratio, and a bacterial culture. Initially, most cats will only need to attend a clinic once or twice a year. However, those cats showing significant aging changes may need to attend more frequently for repeated reassessment, monitoring, and treatment.

Table 1. Mobility/Cognitive Dysfunction Questionnaire*

<table>
<thead>
<tr>
<th>My cat</th>
<th>Yes</th>
<th>No</th>
<th>Maybe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is less willing to jump up or down</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Will only jump up or down from lower heights</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Shows signs of being stiff at times</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Is less agile than previously</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Shows signs of lameness or limping</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Has difficulty getting in or out of the pet door</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Has difficulty going up or down stairs</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Cries when picked up</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Has more accidents outside the litter box</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Spends less time grooming</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Is more reluctant to interact with me</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Plays less with other animals or toys</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Sleeps more and/or is less active</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Cries out loudly for no apparent reason</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Appears forgetful</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

*Ensure there have been no environmental reasons for the change(s).
Management of Cats with CDS

Although CDS cannot be cured, its clinical signs can be reduced with suitable intervention. While there are no published studies relating to the treatment of cats with CDS, it is possible to consider potential treatment options by extrapolation from studies of CDS in dogs and even from humans with Alzheimer’s disease. Potential interventions include dietary modification, environmental management, and drug therapies.9,10,20

Dietary Modification and Environmental Management

Diets enriched with antioxidants and other supportive compounds (e.g., vitamin E, beta carotene, and essential fatty acids) are believed to reduce oxidative damage, and so reduce β-amyloid production and improve cognitive function. In humans, studies have shown that high intake of fruits, vegetables, vitamins E and/or C, folate and/or B12 may improve cognition. In addition, alpha-lipoic acid and L-carnitine enhance mitochondrial function, and omega-3 fatty acids promote cell membrane health and, in humans, have been found to be beneficial in the treatment of dementia. Unfortunately, excessive intake of some of these compounds can be harmful. In general, combinations of these compounds are believed to work best.

There have been a number of studies investigating the potential benefit of various supplements in dogs with CDS.14,20-22 For example, a study of dogs over 6 years of age, when given a supplement containing omega-3 fish oils, vitamins E and C, L-carnitine, alpha-lipoic acid, coenzyme Q, phosphotidylserine, and selenium (Aktivait; VetPlus) over a 2-month period, resulted in significant improvements in signs of disorientation, social interaction, and house soiling.23 Unfortunately, a different formula is needed for cats because alpha-lipoic acid is toxic in this species.24 Although the new feline-safe version of Aktivait is now on the market, trials in cats still need to determine its efficacy. A number of other supplements have also been investigated in dogs. For example, placebo-controlled studies have shown significant improvements in dogs with CDS when given a supplement containing ginkgo biloba, vitamins B6 and E, and resveratrol (Senilife; CEVA Animal Health),25 and activity and awareness were improved when S-adenosyl-l-methionine was given as a supplement.26,27 Although S-adenosyl-l-methionine has not been studied for the treatment of CDS in cats, it is known to be safe in this species and may be worth considering for the management of feline dementia.10

There is now a growing list of compounds that have been suggested to have beneficial effects on the aging feline brain10; however, no placebo-controlled studies have yet been reported relating to their use in this species, either as single ingredients or in potentially synergistic combinations.

Environmental enrichment can lead to an increase in nerve growth factors, which can stimulate the growth and survival of nerves and an increase in cognitive function. The combination of environmental stimulation (e.g., toys, company, interaction, and food hunting games) and a diet enriched with antioxidants is believed to have a synergistic action in improving cognitive function. In aged dogs, a 4-year study on the use of an antioxidant-enriched diet (e.g., vitamins E and C, selenium, fruit and vegetable extract [beta carotene, other carotenoids, flavinoids]), mitochondrial cofactors (DL-lipoic acid and L-carnitine), and essential fatty acids (omega-3 fatty acids) (Hill’s b/d), plus environmental enrichment (e.g., toys, kennel mate, walks, and cognitive experience testing) revealed rapid (2-8 weeks into treatment) and significant improvements in learning and memory. Interestingly, although there was no reversal of existing pathology, the antioxidants did appear to prevent the deposition of more β-amyloid, whereas the environmental enrichment did not.28,29

The clinical signs of CDS in dogs have also been reduced by feeding a diet enriched with plant-derived medium-chain triglycerides, which provide ketones as a more efficient energy source for the brain (Purina One Vibrant Maturity 7+; Nestlé Purina).30 Unfortunately, cats are generally not keen on eating diets enriched with medium-chain triglycerides so it is unclear if this approach will be useful for cats with CDS.

Although similar studies showing improvement of CDS in cats in response to dietary supplementation are not yet available, a 5-year study feeding healthy old cats (7-17 years old; n = 90) a diet (Nestlé Purina Pro Plan Age 7+; Nestlé Purina) supplemented with antioxidants (vitamin E and β-carotene), essential fatty acids (omega-3 and 6 fatty acids), and dried whole chicory root (which contains the prebiotic inulin to modify intestinal flora) resulted in the supplemented cats living significantly longer (and more healthily) than the unsupplemented ones.31 A preliminary study looking at a diet supplemented with tocopherols, L-carnitine, vitamin C, beta-carotene, docosahexaenoic acid, cysteine, and methionine, which was fed to 46 elderly cats, showed increased activity compared with that in control cats.32 Other similarly supplemented diets are now on the market (e.g., Hill’s Feline j/d, which is actually designed for cats with OA), supplemented with a mixture of antioxidants (e.g., vitamins C and E, and beta carotene), essential fatty acids, chondroproteins (e.g., methionine, glycosaminoglycans, glucosamine, and chondroitin sulfate), and L-carnitine and lysine. In a 2-month study of 75 cats 12 years of age or older that were not selected for signs of CDS or (OA) where owners were asked to complete questionnaires, >70% improved in one or more signs of cognitive function (and > 50% improved in one or more signs of mobility).33

Unfortunately, once cats develop significant clinical signs of CDS, instigating environmental change can actually have a negative effect. This is because affected cats often become stressed and cope poorly with change; whether in their environment, their daily routine, their diet, or with members of the household. The cat’s response to this stress is to show more obvious signs of CDS (e.g., anorexia, hiding, and/or upset of toileting habits).34 For these cats, where possible, change should be kept to a minimum, and when it cannot be avoided it should be made slowly and with much reassur-
ance. Some cats may be so easily disoriented and cope so poorly with change that they may benefit from having their area of access reduced in size, e.g., to a single room containing everything they need, that is, the key resources for cats: food, water, litter box, resting places, either somewhere to hide and/or some way of escaping, and companionship (as dictated by the particular needs of the individual cat). This core territory can then be kept safe and constant. Environmental application of synthetic feline appeasement pheromone (Feliway; Ceva) can also help in reducing feline anxiety.

Potential Drug Therapies

There are a growing number of possible drug options for Alzheimer’s disease. These include various cholinesterase inhibitors (to increase the availability of acetylcholine at the neuronal synapses), selegiline (to manipulate the monoaminergic system), antioxidants (e.g., vitamin E), and nonsteroidal anti-inflammatory drugs (to reduce neuronal damage). However, there are currently very few that have actually been approved for the treatment of human dementia. Selegiline (Selgian; Ceva: Anipryl; Pfizer), propentofylline (Vivitonin; Intervet), and nicergoline (Fitergol; Merial, which has now been discontinued), are the only drugs that have been approved for the treatment of canine dementia in either the United Kingdom or the United States. Although there are no drugs licensed for the treatment of CDS in cats, a number of drugs have been used “off label.” These include selegiline (suggested dose, 0.25-1.0 mg/kg orally every 24 hours), propentofylline (suggested dose, 12.5 mg/cat orally every 24 hours), and nicergoline (suggested dose, one fourth of 5 mg every 24 hours—now discontinued), all of which have been used in cats with varying degrees of success. For example, a small open trial using selegiline showed a reduction of disorientation, vocalization, and stereotypic behavior, and the American Association of Feline Practitioners supports the use of this drug for the treatment of CDS. Other drugs that have been suggested to treat particular signs of CDS in cats include anxiolytic drugs, such as a number of nutraceuticals (e.g., Zylkène; Intervet Schering Plough), buspirone, and benzodiazepines (e.g., diazepam, although hepatotoxicity is a particular risk with this drug) or antidepressants (that lack anticholinergic effects) such as fluoxetine.

Case Report: Sally

History

Sally, a 16-year-old neutered female domestic shorthaired cat (Fig 1) was presented with a 2-week history of crying loudly at night and a 6-month history of urinating around the house, which was now occurring with increasing frequency. She was still defecating in her litter box. Sally had always had a “picky” appetite, but her owner reported that she had even become very fussy with her food, had lost weight, and stopped grooming. Overall, the owner felt Sally had aged considerably in the last 2 years. Sally was an indoor/outdoor cat, the only pet in the household, and was fed dry and wet cat food.

Physical Examination

Sally was bright and alert, but thin (body condition score 2-3 of 9), her coat was ill kept and matted, and she appeared slightly dehydrated. Her heart rate was 190 beats per minute, with a grade II of VI systolic murmur, loudest over the sternum, and with occasional gallop sounds. Her respiratory rate was 40 breaths per minute. Her left thyroid gland felt slightly enlarged, and there was considerable bony enlargement of both of her elbows and stifles (consistent with OA).

What Are the Major Problems on the Problem List for This Case?

1) Inappropriate urination, 2) night-crying, 3) tachycardia, cardiac murmur, and occasional gallop sound, and 4) OA.

What Are the Major Differential Diagnoses for These Problems?

Inappropriate urination. 1) Feline lower urinary tract disease, 2) polyuria/polydipsia (e.g., CKD, DM, hyperthyroidism, liver disease, hypercalcaemia, etc.), 3) neuromuscular/orthopedic disease (e.g., OA), and 4) central nervous system/behavioral problems (see Box 1).

Night-crying (see Box 1)

Tachycardia, cardiac murmur, and occasional gallop sound. Primary cardiac disease (which is unlikely in a cat of this age), secondary cardiac disease (e.g., due to hyperthyroidism, hypertension, CKD, DM, etc.).
OA, idiopathic or secondary to trauma, infection, obesity, or developmental defects.

What Is Your Diagnostic Plan?

See Box 2, including electrocardiogram (ECG), echocardiography, chest radiography, and head MRI.

Results

Serum biochemistry revealed the following: albumin 28 (2.8) (reference range: 28-39 g/L [2.8-3.9 g/dL]), alanine transaminase 64 (reference range: 15-60 U/L), globulin 32 (3.2) (reference range: 23-50 g/L [2.3-5.0 g/dL]), alkaline phosphatase 112 (range, 10-100 U/L), creatinine 180 (2.0) (reference range: 140-177 µmol/L [1.6-2.0 mg/dL]), glucose 7.6 (138) (reference range: 3.3-5.0 mmol/L [6.0-9.0 mg/dL]), Ca 2.2 (8.8) (reference range: 2.1-2.9 mmol/L [8.4-11.6 mg/dL]), PO₄ 2.5 (7.7) (reference range: 1.4-2.5 mmol/L [4.3-7.7 mg/dL]), K 4.0 (reference range: 4.0-5.0 mmol/L [mEq/L]), thyroxin 60 (4.7) (reference range: 19-65 nmol/L [1.5-5.0 µg/dL]). Systolic blood pressure was 150 (reference range: 120-180 mm Hg) and FeLV and FIV tests were negative. For urine (collected by cystocentesis): SG was 1.035 (reference 1.015), pH was 7.8, glucose was negative, ketones were negative, protein was positive and sterile; the urine protein to creatinine ratio was 0.3 (ref 0.4). Hematology was unremarkable. Thoracic radiographs, abdominal ultrasound, and head MRI were all unremarkable. Echocardiography revealed moderate cardiac hypertrophy with a basal septal bulge. An electrocardiogram showed tall QRS complexes.

What Is Your Interpretation of These Findings?

Marginal renal insufficiency: slightly increased serum urea and creatinine concentrations (in a cat that has very little muscle mass and has not been fed for 12 hours), with a urine SG just within normal limits (but she is slightly dehydrated and a reasonable proportion of her diet consists of dry cat food, so her urine SG should be higher than this).

Possible early hyperthyroidism: serum thyroxin is at the top of the reference range, but Sally is an old, ill cat who might be expected to show thyroxin suppression; there are also slight increases in her liver enzymes and bile acid concentration, which might be consistent with early hyperthyroidism.

Stress: slight increase in blood glucose concentration.

Increase in urine pH: this can be caused by stress (hyperventilation), diet, urease-producing urinary tract infection, or an old urine sample.

Moderate cardiac hypertrophy: this could indicate either primary cardiac disease or (perhaps more likely in a cat of this age) cardiac disease secondary to hyperthyroidism, hypertension, CKD, DM, etc.

What Are Your Most Likely Diagnoses?

CDS, OA (elbows + hips), moderate cardiac hypertrophy, marginal renal insufficiency, and possible early hyperthyroidism.

How Would You Manage This Case?

CDS: environmental modification, diet change or supplementation, drugs?

OA: environmental modification, diet change or supplementation, NSAIDs?

Monitor cardiac hypertrophy.

Regularly reassess: monitor renal function, systemic blood pressure, serum biochemistry including thyroxin concentration, etc.

Follow-up

Sally was initially managed with environmental modification. This evolved ensuring that she had easy access to all of her key resources (food, water, litter box, resting places, hiding places/escapes routes, and company); her food and water bowls were raised up slightly (Fig 2), ramps were added to allow easier access to favored sleeping areas, a deep, comfortable, heated bed was added, and a large, low-sided litter box was placed within easy reach. These changes were made gradually. It was hoped that they would help Sally’s CDS and OA, and the newly added litter box meant any polyuria caused by the early CKD had less chance of resulting in peruria. Sally’s food was slowly changed to a diet containing a mixture of antioxidants (e.g., vitamins C and E, and beta carotene), essential fatty acids, chondroprotectants (e.g., methionine, glycosaminoglycans, glucosamine, and chondroitin sulphate), and L-carnitine and lysine; this formulation was

![Figure 2. Blue, an 18-year-old neutered female domestic shorthaired cat with cognitive dysfunction syndrome and osteoarthritis who has her food and water raised up slightly to facilitate and encourage her to eat and drink.](image-url)
considered beneficial to both her OA and CDS. Together these changes resulted in a significant improvement that was noted within a month of instigating the changes; Sally cried less at night, had no further episodes of periuria, and ate better.

Six months after the initial investigation Sally was reported to be doing well, but still crying at night, which her owner felt was due to progression of the OA because the vocalization appeared to occur when Sally was changing position when sleeping or when she was leaving her bed. Full reassessment, including repeated assessment of serum biochemistry, urinalysis, and systemic blood pressure revealed little change. Sally was started on a 2-week trial course of low-dose meloxicam (0.01 mg/kg orally every 24 hours). At Sally’s reassessment 2 weeks later her owner reported that the night-crying had almost completely resolved. Repeat serum biochemistry and urine analysis showed no worsening of kidney function. It was recommended that Sally’s owner should monitor Sally’s behavior and appetite closely, and only give the meloxicam if Sally was first willing to eat her food. To date, Sally has been on this regimen for nearly 6 months and continues to do well, with regular full check-ups scheduled every 3 to 4 months.

Further information for owners of cats with many geriatric diseases can be found on the FAB website (www.fabcats.org). Very useful books designed to help owners of cats with CKD, feline lower urinary tract disease, hyperthyroidism, or blindness are available from www.catprofessional.com.

References

33. Hill’s data on file, 2008